- 7. T. V. Stezhko, V. G. Granik, R. G. Glushkov, L. F. Roshchina, A. I. Polezhaeva, and M. D. Mashkovskii, *Khim.-farm. Zh.*, No. 3, 290 (1984).
- 8. M. Hori, T. Kataoka, H. Shimizu, E. Imai, Y. Matsumoto, M. Kawachi, K. Kuratani, H. Ogura, and H. Takayanagi, *Heterocycles*, 22, 2199 (1984).
- 9. M. Hori, T. Kataoka, H. Shimizu, E. Imai, Y. Matsumoto, M. Kawachi, K. Kuratani, and M. Yokomoto, *Chem. Pharm. Bull.*, 34, 1328 (1986).
- 10. A. Lefebvre, R. Rips, A. Martine, and C. Lespagnol, J. Heterocycl. Chem., 22, 105 (1985).

SYNTHESIS OF NEW CONDENSED ANALOGS OF ISOINDOLINIUM SALTS*

É. O. Chukhadzhyan, Él. O. Chukhadzhyan, K. G. Shakhatuni, and A. T. Babayan

UDC 547.677:542.947

Quaternary ammonium salts that contain a 3-(α -naphthyl)propargyl group in addition to a group of the propargyl type undergo intramolecular cyclization of the diene-synthesis type under base-catalysis conditions to give condensed isoindolinium analogs.

Among the practically important nitrogen-containing heterocyclic compounds not much data relative to compounds of the isoindolinium series and their condensed analogs containing a phenanthrene ring are available.

It has been reported [2] that an accessible method for obtaining condensed dihydroisoindolinium salts was developed on the basis of the cyclization of ammonium salts containing a $3-(\alpha-naphthyl)$ propargyl group in addition to a group of the allyl type.

In the present research, to synthesize potentially biologically active nitrogen-containing heterocycles with a phenanthrene ring we studied the cyclization of dialkylpropargyl[3-(α -naphthyl)propargyl]- (Ia-f) and dialkylbis[3-(α -naphthyl)propargyl]ammonium (Ig-l) salts.

It was established that salts Ia-I in the presence of an aqueous solution of 0.2 mole of alkali per mole of the salt, in contrast to the allyl analogs [2], undergo cyclization at room temperature rapidly with spontaneous heat evolution to give 2,2-dialkylnaphth[f]isoindolinium (IIa-e) and 2,2-dialkyl-4-(α -naphthyl)naphth[f]isoindolinium (IIg-I) bromides in almost quantitative yields (see Table 1).

I, Ila-f X=H, g-1 X= α -naphthyl;a, R=CH₃, b,h R=C₂H₅, c,i R=C₃H₇; d,j R₂= = (CH₂)₄, e,k R₂= (CH₂)₂O(CH₂)₂

In [3], despite the data in [4], it was shown that dialkylbis(3-phenylpropargyl)ammonium salts undergo cyclization both in the presence and absence of a base when aqueous or aqueous alcohol solutions of them are heated. Salts lg-l undergo almost quantitative cyclization under similar conditions.

The IR spectra of cyclic salts IIa-I do not contain the absorption bands of a disubstituted $C \equiv C$ bond at 2230-2235 cm⁻¹ that are characteristic for starting salts Ia-I and of a monosubstituted $C \equiv C$ bond at 2120-2130 cm⁻¹ that are characteristic for salts Ia-f; characteristic absorption bands of a 1,2,3,4-substituted aromatic ring at 810 cm⁻¹, of 1,2,4,5-and 1,2,3,4,5-substituted aromatic ring at 860-900 cm⁻¹, of a 1,2,3-substituted aromatic ring at 780-785 cm⁻¹, and of a 1,2-substituted aromatic ring at 730-770 cm⁻¹ are observed.

*Communication 209 from the series "Research on amines and ammonium compounds." See [1] for Communication 208.

Institute of Organic Chemistry, Academy of Sciences of the Armenian SSR, Yerevan 375094. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 759-762, June, 1991. Original article submitted May 28, 1990.

	Yield, %	88	96	16	98	95	96	88	64	95	16	93	92
3LE 1. Characteristics of the Starting (Ia-I) and Cyclic (IIa-I) Salts		272 5)	298 6)	255 1,18). 355	254	300	280	275 1,40).	285 2,94).	28.3 2,89).	300	280 2,81)	255 1,30). 350
	λ _{max} , r	(4,69). 350 (2,8	(4.82). 350 (2.8	(4,78), 300 (4 (2,54),	(4.85).	(4.79), 335 (2	(4,58).	(4.73), 300 (4 99)	(4,74). 330 (5	(4.60).	(4,85),	(1,89). . 350 ((4.58), 280 (∉ (2,78),
	UV spectrum, (log.E)	215 2,52),	255 2,83).	225 (4,52). 345	224 (4,38)	255 (2,45),	255 2,48)	260 (4.51). 55 (2,	260 (4,30),	260 (4,45),	255 (2,76)	$260 \\ (2.87)$	222 (4.36) 332
		2,8:3), 342 (1,69). 335 (4,83). 275 2,83).	4,86), 297	4.62), 320, 43)	4,43). 348 (5.04), 283 (08), 3	4,98). 300 86)	5.02). 300. 95)	5,09). 350	4.06). 332	4.69). 272 4.11).
		335 ((4,36),	215 ((4,11),	215 ((4,90), 340 ((2,85)	215 ((4.84),	215 ((3.98). 350 (2	215 ((3,93),	220 ((4,56), 340 (3	$222 \\ (4,48), (4,48), (2) \\ 350 \\ (2)$	220 ((4.53), 350 (2	222 ((2,83),	222 ((4,59),	215 (4.82). 298 (2.85)
	IR spectrum, cm ⁻¹	1530.	1520,	1500.	5	3060	1610.	1500.	1510.	1500,	1510.	1590,	1500,
		1500,	1510,	860.	00, 16(3020,	1600,	870,	875,	875,	865,	1510,	875,
		875, 3070	870,	810,	80, 15	1600,	810,	810. 3060	805. 3065	805. 3065	800, 3055	875,	800. 3060
		810. 3020,	810. 3060	760,	810, 8	860,	765,	785, 3015,	780. 3010.	780. 3010.	780, 3000	805. 3065	780. 3010
		760. 1600.	760.	730. 1600	760.	760,	7.30, 3020	1590	745, 1590	745,	750. 1590	3010	1590
	ъ, ч	0.46	0,51	0,53	0,4.1	0,56	0,48	0,53	0.48	0,51	0.52	0,48	0.55
	mp, °C (From water)	. 274	. 271	0	с С			61	5	6	. 222	6	ę
		273	270	24	30	30	31	25	20	22	221	22	26
	Com-	Ila	qII	<u>2</u>	pH	ille	11F	IIg	ЧП	ļli	i.u	IIk	111
	$\begin{bmatrix} UV \text{ spectrum,} \\ \lambda_{\max}, \text{ nm} (\log \varepsilon) \end{bmatrix}$	(3,94).	(3.89). (4.03)	(3,90). (4,10)	(3.87). (4,01)	(13,91). (3,99)	(3,88) (4,03)	(5.48) (5.38)	(5,40). (5,35)	(5,50). (5,32)	(4,53). (4,48)	(4,54). (4,54)	(4,63). (4,60)
		, 282 1, 312	, 285	, 290), 315	. 288	, 285	, 292	, 288 , 315	, 285 1, 315	. 315	, 285 1, 312	, 337	, 310
		(5,01) (3,90)	(4.98) (1,00)	(4.89) (3.85]	(4.92) (3.88)	(5,00) (3,94)	(4,95) (3,90)	(5,11) (5,51)	(5,03) (5,61)	(5.13) (5,59]	(5,58) (4,63)	(5.51) (4.66)	(5.05) (4,70)
		0, 225	0, 227 300	0.228	0.225	0.225	0 225	0.223	0.220	0, 227	0, 225	5, 222 300	0.225
	, cm	, 159(0, 306	0 159	0, 158	159	0, 159 50	1, 1510 0, 315	0, 309 0, 309	0 159	0 159	0, 306), 159. 0	0, 159
	ctrum	1500 0, 303	1510	0 1500	0, 315	0, 315	150(1500, 306	151(0, 306	150(0, 306	0, 301	5, 307	5, 306
	s spe	775,), 223	, 224	780, 223	780, 224	0, 233	780,	780, 301	, 301 , 301	, 304	760.	, 301,	780, 301,
	H	2130	735.	2130	212	212	730.	2230	745.	7 35. 223	740.	750. 223	2230
	mp, °C (from ethanol)	4 42	25 126	Гигроск.	161 162	155	162	70	Ξ	176	68 69	151 152	150
								· <u> </u>					
	pirica rmula	₈ BrN	2BrN	*BrN	¹⁰ BrN	2BrN	₀ BrNO	ыBrN	_{:s} BrN	¹² BrN	, BrN	₃ BrN	₈₆ BrNO
	E	C ₁₈ H ₁	C ₂₀ H ₂	C22H2	C20Hz	C ₂₀ H.	Call	C ₂₄ H ₂	CaeH	C ₁₂ H ₁	C26H2	C ₃ H ₂	C.011:
TAB	Com- pound	la	Ч	1/c	PĮ	e	If	lg	41	li	Ü	¥	=

4 ; Ć . 1 Ę

*Compounds Ia-I and IIa-I are isomers. **Thin-layer chromatography was carried out on Silufol UV-254 plates in an n-butanol-ethanol-water-acetic acid (8:2:3:1) system.

As expected, the UV spectra of the starting (Ia-1) and cyclic (IIa-1) salts contain three types of bands, viz., α , ρ , and β , which differ with respect to intensity and vibrational structure. For the phenanthrenes the α band is always the longest-wave band, and the relationship $\lambda_{\alpha} > \lambda_{\rho} > \lambda_{\beta}$ [5, 6] is retained for them; this is also observed for cyclic salts IIa-1. As expected, the intense absorption bands of the cyclic salts have lower values of the logarithms of the molar extinction coefficients (2.43-2.86) than those of the starting salts (3.99-4.11).

The introduction of substituents that have multiple bonds or unshared electron pairs into the molecules of the condensed aromatic compounds affects their absorption spectra [5]. In fact, the combination of a phenanthrene ring with a naphthalene ring in the case of salts IIg-l leads to an increase in the logarithms of the molar extinction coefficients (see Table 1).

EXPERIMENTAL

The IR spectra of KBr pellets or suspensions of the compounds in mineral oil were recorded with a UR-20 spectrometer. The UV spectra of solutions in ethanol were recorded with a Specord UV-vis spectrophotometer. Thinlayer chromatography was carried out on Silufol UV-254 plates in an n-butanol—ethanol—water—acetic acid (8:2:3:1) system with development with iodine vapors.

Starting salts Ia-1 were obtained in quantitative yields by the reaction of dialkyl-3-(α -naphthyl)propargylamines with propargyl bromide or 3-(α -naphthyl)propargyl bromide in absolute ether or absolute ether—acetonitrile. The physicochemical characteristics pertaining to the starting and cyclic salts are presented in Table 1.

The results of elementary analysis of salts I and II for N and Br were in agreement with the calculated values.

Isoindolinonium Salts II (General Method). A. A 0.3-0.8-ml sample, respectively, of 2 N KOH solution (the salt:base molar ratio was 5:1) was added to a solution of 3-8 mmole of starting salt la-l in 4-6 ml of water (if the salt was only slightly soluble, the solution was heated to $35-40^{\circ}$ C, while 1.5-2 ml of ethanol was added until a homogeneous solution was obtained in the case of salts Ig-l). Rapid spontaneous warming up of the reaction mixture was observed 2-5 min after the addition of the aqueous alkali. The reaction mixture was then extracted with ether (1×15 ml). After 1-2 days, the cyclization product was isolated by filtration.

B. A solution of 0.8 mmole of dialkylbis[3-(α -naphthyl)propargyl]ammonium bromide Ig-I in 4 ml of water (if the starting salt did not dissolve on heating in water, 1-1.5 ml of ethanol was added) was heated at 90-92°C for 15 h (the solution of salt Ig was heated for 30 h). Compounds with characteristics that were identical to those of salts IIg-I obtained by method A were isolated by filtration or evaporation of the solvent to dryness.

LITERATURE CITED

- 1. A. Kh. Gyul'nazaryan, T. A. Saakyan, N. O. Markaryan, and A. T. Babayan, Zh. Org. Khim. (in press).
- 2. É. O. Chukhadzhyan, Él. O. Chukhadzhyan, K. G. Shakhatuni, and A. T. Babayan, *Khim. Geterotsikl. Soedin.*, No. 5, 615 (1989).
- 3. A. T. Babayan, É. O. Chukhadzhyan, and Él. O. Chukhadzhyan, Dokl. Akad. Nauk Armyansk. SSR, 52, 281 (1971).
- 4. I. Iwai and T. Hiraoka, Chem. Pharm. Bull., 11, 1564 (1963).
- 5. L. A. Kazitsyna and N. B. Kuplet-skaya, Application of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry [in Russian], Izd. Moskovsk. Gosudarstv. Univ., Moscow (1979), p. 33.
- 6. A. Stern and K. Timmons, *Electronic Absorption Spectroscopy in Organic Chemistry* [Russian translation], Mir, Moscow (1974), p. 149.